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Abstract

The explosive growth of the world-wide-web and the emergesice-commerce has led to the development of
recommender systema personalized information filtering technology used teniify a set ofN items that will
be of interest to a certain user. User-based Collaboratiierifig is the most successful technology for building
recommender systems to date, and is extensively used in caamyercial recommender systems. Unfortunately, the
computational complexity of these methods grows lineaiithwhe number of customers that in typical commercial
applications can grow to be several millions. To addresseleralability concerns item-based recommendation
techniques have been developed that analyze the user-itgrix no identify relations between the different items,
and use these relations to compute the list of recommematio

In this paper we present one such class of item-based recodatien algorithms that first determine the similari-
ties between the various items and then used them to idehéfget of items to be recommended. The key steps in this
class of algorithms are (i) the method used to compute thiasity between the items, and (ii) the method used to
combine these similarities in order to compute the sintydsetween daskebf items and a candidate recommender
item. Our experimental evaluation on five different datasd#tow that the proposed item-based algorithms are up
to 28 times faster than the traditional user-neighborhcaskll recommender systems and provide recommendations
whose quality is up to 27% better.

1 Introduction

The explosive growth of the world-wide-web and the emergafe-commerce has led to the developmemeobm-
mender systenj&1]. Recommender systems is a personalized informatitamifig technology, used to either predict
whether a particular user will like a particular iteprédiction problen) or to identify a set oN items that will be of
interest to a certain user (tdg-recommendation problémin recent years, recommender systems have been used in
a number of different applications [18, 7, 9, 19, 17, 8, 10,sBch as recommending products a customer will most
likely buy movies, TV programs, or music a user will find ergdyye, identifying web-pages that will be of interest, or
even suggesting alternate ways of searching for informatio
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Various approaches for recommender systems have beerogedethat utilize either demographic, content, or
historical information[7, 1, 2, 18, 19, 9]. Collaborativit€ring (CF), is probably the most successful and widelgdis
techniques for building recommender systems [12, 9]. Foheger, CF-based recommender systems use historical
information to identify a neighborhood of people that in theest have exhibited similar behavia.g, accessed the
same type of information, purchased a similar set of praguikied/disliked a similar set of movies) and then analyze
this neighborhood to identify new pieces of informationtthdll be liked by the user. We will refer to this class of
approaches asser-based recommendation algorithms.

Despite their success, CF-based recommender systemswawedjor limitations. The first is related to sparsity
and the second is related to scalability [17]. In many recemder systems, the amount of historical information for
each user and for each item is often quite limited. As a re€iftbased recommender systems cannot accurately
compute the neighborhood and identify the items to recontinleading to poor recommendations. To address this
problem, a variety of techniques that use either dimensiigmaduction [16, 15] or content-based software agents to
automatically generate ratings [6] have been developddrtbease the density of the datasets.

Unfortunately, nearest neighbor algorithms require comations that grows linearly with the number of users and
items. With millions of users and items, existing CF-bassmbmmender systems suffer serious scalability problems.
One way of reducing the complexity of the nearest-neighborgutations is to cluster the users and then to either limit
the nearest-neighbor search among the users that belohg toetirest cluster or use the cluster centroids to derive
the recommendations [20, 10]. These approaches, evenfhitibay can significantly speed up the recommendation
engine, they tend to decrease the quality of the recommiemdatAn alternate approach is to build recommendation
models that are based on the items. In these approachedstbgdal information is analyzed to identify relations
between the items such that the purchase of an item (or a $&hef) often leads to the purchase of another item
(or a set of items) [4, 13, 21, 8]. These approaches, singeubke the pre-computed model, can quickly recom-
mend a set of items, and have been shown to produce recomtizendssults that in some cases are comparable to
traditional, neighborhood-based CF recommender systéfeswill refer to this class of approaches iéem-based
recommendation algorithms.

In this paper we present one such class of model-bged recommendation algorithms. These algorithms first
determine the similarities between the various items aed tised them to identify the set of items to be recommended.
The key steps in this class of algorithms are (i) the methed ts compute the similarity between the items, and (ii) the
method used to combine these similarities in order to comfhe similarity between lbaskebf items and a candidate
recommender item. In particular, we present two differeatimds of computing the item-to-item similarity. The first
method models the items as vectors in the user space, andhasassinemeasure to measure the similarity. The
second method computes the item-to-item similarity usiteghnique inspired by the conditional probability between
two items, extended so that it can differentiate betweersugith varying amounts of historical information as well as
differentiate between frequently and infrequently pusgthitems. Furthermore, we present a method of combining
these item-to-item similarities that accounts for itenighborhoods of different density, that can incorrectlysbia
the overall recommendation. We experimentally evaluateatgorithms on five different datasets arising in various
applications. Our experiments show that the item-to-iteiselal algorithms are up to 28 times faster than the traditiona
user-neighborhood based recommender systems. Furtheermaralgorithms achieve substantially higher quality. In
particular, the cosine- and conditional-probability ldhaégorithms are on the average 15.7% and 27% better than the
user-based recommendation algorithm, respectively.

The rest of this paper is organized as follows. Section 2gmssan overview of the traditional user-basep-N
recommendation algorithms. Section 3 describes the vauphiases and algorithms used in our item-baspeN
recommendation system. Section 4 provides the experithevahiation of the various parameters of the proposed
algorithms and compares it against the user-based algwitfrinally, Section 5 provides some concluding remarks
and an outline of the future research.
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2 Overview of User-Based Top-N Recommendation Algorithms

User-based Collaborative filtering (CF) [12, 9] is the masteessful technology for building recommender systems
to date, and is extensively used in many commercial recordaresystems. These schemes rely on the fact that each
person belongs to a larger group of similarly-behavingvidlials. Consequently, itemg&€., products) frequently
purchased by the various members of the group can be usedndtie basis of the recommended items.

Let R be ann x m user-item matrix containing historical purchasing infaton ofn customers om items. In this
matrix, ri j is one if theith customer has purchased thh item, and zero otherwise. L&t be the set of items that
have already been purchased by the customer for which we twartmpute theéop-N recommendations. We will
refer to this customer as theetivecustomer and in order to simplify the presentation we witiiase that the active
customer does not belong to thecustomers stored in matriR. User-based CF recommender systems compute the
top-N recommended items for that customer as follows.

First they identify thek most similar customers in the database. This is often don@deling the customers
and items with the vector-space model, widely used for imfmtiion retrieval [14, 13, 15]. In this model each of the
n customers as well as the active customer is treated as arwedte m-dimensional item space, and the similarity
between the active and the existing customers is measuredrbputing the cosine between these vectors. Once this
set of thek most similar customers have been discovered, their cavreipg rows inR are aggregated to identify
the setC of items purchased by the group as well as their frequencindJthis set, user-based CF techniques then
recommend thé\ most frequent items i€ that are not already it (i.e., the active user has not already purchased).
Note that the frequency of the items in the €ettan be computed by either just counting the actual occuerenc
frequency or by first normalizing each row Bfto be of the same lengtié., ||ri .||2 = 1). This latter normalization
gives less emphasis to items purchased by customers thfatquent buyers and leads to somewhat better results.

Despite the popularity of user-based CF recommender sgstiiey have a number of limitations related to scala-
bility and real-time performance. The computational coewjil of these methods grows linearly with the number of
customers that in typical commercial applications can gmbe several millions. Furthermore, even though the user-
item matrix is sparse, the user-to-user similarity masiguite dense. This is because, even a few frequently piedhas
items can lead to dense user-to-user similarities. Moneogal-timetop-N recommendations based on the current
basket of items, utilized by many e-commerce sites, carakat advantage of pre-computed user-to-user similarities.
Finally, even though the throughput of user-based recondiat@m engines can be increased by increasing the number
of servers running the recommendation engine, they carewedse the latency of eatdp-N recommendation that
is critical for near real-time performance.

3 Item-Based top-N Recommendation Algorithms

To address the scalability concerns of user-based recontation algorithms, item-based recommendation techniques
(also known as model-based) have been developed [4, 13].2Th8se approaches analyze the user-item matrix to
identify relations between the different items, and them these relations to compute the listtop-N recommenda-
tions. The key motivation behind these schemes is that @mestwill more likely purchase items that are similar
or related to the items that he/she has already purchasede Biese schemes do not need to identify the neighbor-
hood of similar customers when a recommendation is reqdgistey lead to much faster recommendation engines. A
number of different schemes have been proposed to compateltitions between the different items based on either
probabilistic approaches or more traditional item-ta¥iteorrelations.

In this paper we study a class of item-basep-N recommendation algorithms that use item-to-item sintifari
to compute the relations between the items. During the mbaiding phase, for each item, the k most similar
items{j1, j2, ..., jk} are computed, and their corresponding similari{gs, sj,, . . . , Sj,} are recorded. Now, for each
customer that has purchased a set,(basketl of items, this information is used to compute tbp-N recommended
items as follows. First, we identify the sétof candidate recommended items by taking the union ok ttm@st similar
items for each itenj € U, and removing from the union any items that are already ifThen, for each itens € C
we compute itsimilarity to the setJ as the sum of the similarities between all the itejrss U andc, using only the
k.most.similar.items.ofi..Finally;the items irC are sorted in non-increasing order with respect to thatlanty, and
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the firstN items are selected as thap-N recommended set.

3.1 Item Similarity

The critical step in the proposed item-based recommendatgorithm is the method used to determine the similar-
ity between the items. In the rest of this section we desdslmedifferent classes of similarity algorithms that we
developed. One is derived from the vector-space model andttter is derived from probabilistic methods.

3.1.1 Cosine-Based Similarity

One way of computing the similarity between two items is &atreach item as a vector in the space of customers and
use thecosinemeasure between these vectors as a measure of similanityaby, if R is then x m user-item matrix,
then the similarity between two itemsandu is defined as the cosine of tinedimensional vectors corresponding to
thevth anduth column of matrixR. The cosine between these vectors is given by

- -

v-u

sim(v,u) =cos(v, l) = ————,
[lv]]2][U]2

@
where “’ denotes the vector dot-product operation.

From Equation 1 we can see that the similarity between twastwill be high if each customer that purchases
one of the items also purchases the other item as well. Funtire, one of the important feature of the cosine-based
similarity is that it takes into account the purchasing treqcy of the different items (achieved by the denominator in
Equation 1). As a result, frequently purchased items wilttéo be similar to other frequently purchased items and
not to infrequent purchased items, and vice versa. Thisfg®mant as it tends to eliminate obvious recommendations,
i.e., recommendations of very frequent items, as these itertidanid to be recommended only if other frequently
purchased items are in the current basket of items.

As it was the case with the user-based recommendation #igwmj the rows ofR can either correspond to the
original binary purchase information, or it can be scalethst each row is of unit length (or any other norm), so that
to differentiate between customers that buy a small or &largnber of items. Depending on how the customers are
represented, the cosine-based item similarity will beedéht. In the first case, for any pair of items, each customer
will be treated equally, whereas in the second case, moreriiaapce will be given to customers that have purchased
fewer items. The motivation for the second scheme is thaiwoohasing information for customers that have bought
few items tends to be more reliable than co-purchasing imé&ion for customers that buy many items, as the first
group tends to represent consumers that are focused inrcpraaluct areas.

3.1.2 Conditional Probability-Based Similarity

An alternate way of computing the similarity between each piitems v andu is to use a measure that is based
on the conditional probability of purchasing one of the itegiven that the other items has already been purchased.
In particular, the conditional probability of purchasingyiven thatv has already been purchasBdu|v), is nothing
more than the number of customers that purchase both iteamslu divided by the total number of customers that

purchased, i.e.,
Freq(uv)

PUP) = Freqm

whereFreq(X) is the number of customers that have purchased the iteme BetX. Note thatin generdP (u|v) #
P(v|u), i.e., using this as a measure of similarity leads to asymmaedtations.

One of the limitations of using conditional probabilitiess@measure of similarity, is that each iterrwill tend to
have high conditional probabilities to items that are bgngchased frequently. That is, quite oftBriu|v) is high,
as a result of the fact thatoccurs very frequently and not becausandu tend to occur together. This problem has
been recognized earlier by researchers in informatiomnesett as well as recommendation systems [14, 13, 8, 5]. One
way of correcting this problem is to divide(u|v) with a quantity that depends on the occurrence frequendgof i
u. Two different methods have been proposed for achievirgy tiihe first one inspired from the inverse-document
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frequency scaling performed in information retrieval gyss, multipliesP (u|v) by —logz(P(u)) [14], whereas the
other one divide® (ujv) by P(u) [8].

Our experiments have shown that this scaling greatly afféxt performance of the recommender system; further-
more, theoptimalscaling degree is problem depended. For these reasonsenbaifollowing formula to compute

the similarity between two items:
Freq(uv)

Freq(v) x (Freq(u))*’ 2)
whereq is a parameter that takes a value between 0 and 1. Note thatawke0O, Equation 2 becomes identical to
P(ulv), whereas iix = 1, it becomes similar (up to a scaling factor) to the formolatn which P(u|v) is divided by
P(u).

One of the limitations of using Equation 2 is that it provides mechanism by which to discriminate between
customers who purchase many items and customers who pergvagems. As discussed in Section 3.1.1, customers
that buy fewer items may be more reliable indicators wheemeihing the similarity between items. For this reason
we have extended the similarity measure of Equation 2 indleviing way. First we normalize each row of matifik
to be of unit length. Then we define the similarity betweemge andu as:

sim(v,u) =

Zvi:ri,l,>ori,u

SIM, W) = Ere00) x (Freq@)®”

®3)

The only difference between Equation 3 and Equation 2 istis&tad of using the co-occurrence frequency we use the
sum of the corresponding non-zero entries ofuttecolumn in the user-item matrix. Since the rows are norrealito

be of unit length, customers that have purchased more itdtiend to contribute less to the overall similarity; thus,
giving emphasis to the purchasing decisions of the custethat have bought fewer items.

3.2 Similarity Normalization

Recall from Section 3 that given a basket of itethgthe item-basetbp-N recommendation algorithm determines the
items to be recommended by computing the similarity of eter inot inU to all the items inJ and selecting th&
most similar items as the recommended set. The similaritywden the set) and an itemv ¢ U is determined by
adding the similarities between each itene U andv (if v is in thek most similar items of1).

One of the potential drawbacks of this approach is that tivesimilarity between each itemnand itsk most similar
items may be significantly different. That is, the item ndigthoods are of different density. This is especially trre f
items that are purchased somewhat infrequently, since @&rateloverlap with other infrequently purchased items can
lead to relatively high similarity values. Consequenthgge items can exert strong influence in the selection of the
top-N items, sometimes leading to wrong recommendations. Fer#ason, instead of using the actual similarities
computed by the various methods described in Section 3. Edch itenu we first normalize the similarities so that
they add-up to one. As the experiments presented in Sectgirow, this often lead to dramatic improvements in
top-N recommendation quality.

3.3 Computational Complexity

The computational complexity of the item-bageg-N recommendation algorithm depends on the amount of time
required to build the model.é., for each item identify the othde most similar items) and the amount required to
compute the recommendation using this model.

During the model building phase we need to compute the giityilaetween each item to all the other items and
then select thk most similar items. The upper bound on the complexity of $ké isO(m?2n), as we need to compute
m(m— 1) similarities, each potentially requiringoperations. However, that actual complexity is signifibasinaller,
because the resulting item-to-item similarity matrix igremely sparse. In our datasets, the item-to-item sintylari
matrix was in general more than 99% sparse. The reason fee thgarsity levels is that each customer purchases a
relatively small number of items, and the items they pureldasnd to be clustered. Consequently, by using sparse
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data structures to storg, and computing the similarities only between pairs of iteh®t are purchased by at least
one customer we can substantially reduce the computationapblexity.

Finally, the amount required to compute ttog-N recommendations for a given basketis given byO(k|U |),
because we need to accesskhmost similar items for each of the itemslih and identify the overalN most similar
items.

4 Experimental Results

In this section we experimentally evaluate the performanfceur item-basedop-N recommendation algorithms
and compare it against the performance of the user-bagedl recommendation algorithms. All experiments were
performed on a Pentium Il based workstation running at 36@MI36MBytes of memory, and Linux-based operating
system.

4.1 Data Sets

We evaluated the performance of the differtagi-N recommendation algorithms using five different datasetssgh
characteristics are shown in Table 1. For each user-itemxmaf the columns labeled “No. Rows”, “No. Columns”,
and “No. of Non-Zeros” show the number of customers/usauslver of items, and total number of transactions,
respectively.

Name No. Rows | No. Columns| No. of Non-Zeros
ecommerce 6667 17491 91222
catalog 50918 39080 435524
ccard 42629 68793 398619
skills 4374 2125 82612
movielens 943 1682 100000

Table 1: The characteristics of the various datasets used in evaluating the fop-N recommendation algorithms.

The ecommercalataset corresponds to web-based purchasing transacfi@rs e-commerce site. Theatalog
dataset corresponds to the catalog purchasing transacifoen major mail-order catalog retailer. Theard dataset
corresponds to the store-branded credit card purchasangactions of a major department store. Thidls dataset
corresponds to the IT-related skills that are present inrésames of various individuals and were obtained from
a major online job portal. Finally, thenovielensdataset corresponds to movie ratings and were obtained thhem
MovieLengesearch project. Note that in our experiments, we igndredattual ratings in thmovielenslataset.

4.2 Experimental Design and Metrics

The goal of our experiments was to evaluate the quality amfbpeance of thaop-N recommendations provided
by the various recommender algorithms. In order to evalttadequality of thetop-N recommendations we split
each of the datasets intoti@ining andtestset, by randomly selecting one of the non-zero entries ol eaw to
be part of the test set, and used the remaining entries fimirigd. Then for each customer/user we obtained the
top-N recommendations by using the items present in the traind@s thebasketfor that customer/user. In the
case of the item-based algorithms, tio@-N recommendation were computed using only the training séuitl
the item similarity models. Similarly, in the case of the mbased algorithms, the nearest neighbors tomaN
recommendations were computed only using the training set.

The quality was measured by looking at the numbehits i.e., the number of items in the test set that where also
present in theop-N recommended items returned for each customer/user. licplar, if n is the total number of

1our datasets were such that each row had at least two noremgies.
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customers/users, we computed theall of the recommended system as:

Number of hits
- .

recall =

A recall value of 1.0 indicates that the recommendation ritigm was able to always recommend the hidden item,
whereas a recall value of 0.0 indicates that the recommamdatgorithm was not able to recommend any of the
hidden items.

In order to ensure that our results were statistically aatmjfor each of the experiments we performed ten different
runs, each time using a different random partitioning imgoning and test. The results reported in the rest of this
section are the averages over these ten trials. Finally| of axperiments we usel = 10, as the number of items
top be recommended by thep-N recommendation algorithms.

4.3 Effect of Similarity Normalization

Our first experiment was designed to evaluate the effectestiilarity normalization as discussed in Section 3.2.
Figure 1 shows the recommendation accuracies achievedumnydffferent item-based recommendation algorithms.
Two of them use the cosine as the similarity function whetéasother two use the conditional probability. The
difference between each pair of algorithms is that one doésormalize the similarities (those labeled “Cos-Sraw’
and “CProb-Sraw”) whereas the other normalizes them (tladsded “Cos-Snorm” and “CProb-Snorm”). For all four
algorithms the rows of the matrix were normalized so thay tlwe of unit lengthk (the number of nearest items to
use in the model) was set to 10, and a value ef 0.5 was used for “CProb-Sraw” and “CProb-Snorm”.

@ Cos-Sraw @ Cos-Snorm [ CProb-Sraw 0 CProb-Snorm ‘

0.6

0.5

0.4

0.3

Recall

0.2

0.1

oo LM []

ecommerce catalog ccard skills movielens

Figure 1: The effect of the similarity normalization on the recommendation quality achieved by the cosine- and conditional-
probability-based recommendation algorithms.

Looking at the results in Figure 1, we can see that the algostthat use similarity normalization achieve higher
recommendation accuracies compared to their countenetslo not. The actual improvement is dataset and algo-
rithm depended. In general, the relative improvements term higher for the conditional probability based scheme
than the cosine-based scheme. The performance of the dusssel scheme improves by 0% to 6.5% with an average
improvement of 3.1%, and the performance of the conditipnalbability-based scheme improves by 3% to 12% with
an average improvement of 7%. Due to this clear performadieardage, in the rest of our experiments we will always
use similarity normalization.
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4.4 Effect of Row Normalization

The second experiment was designed to evaluate the effemvafiormalization so that customers that purchase many
items will weigh less during the item similarity calculati Figure 1 shows the recall achieved by four different
item-based recommendation algorithms. Two of them usedbme as the similarity function whereas the other two
use the conditional probability. The difference betweechegaair of algorithms is that one does not normalize the
rows (those labeled “Cos-Rraw’ and “CProb-Rraw”) wherdesdther normalizes them (those labeled “Cos-Rnorm”
and “CProb-Rnorm”). For all experimeritsvas set to 10, and for the two conditional probability-basgdrithms, a
value ofae = 0.5 was used.

@ Cos-Rraw @ Cos-Rnorm ] CProb-Rraw [ Cprob-Rnorm

0.6

0.5

0.4

0.3

Recall

0.2

0.1 1

oo LM 1]

ecommerce catalog ccard skills movielens

Figure 2: The effect of row normalization on the recommendation quality achieved by the cosine- and conditional-probability-based
recommendation algorithms.

From the results in Figure 2 we can see that the row-nornthlieesion does better in all but tleeard dataset
for both the cosine- and the conditional probability-baakgbrithms. The average improvement for the four datasets
is 2.6% for the cosine and 4.2% for conditional probabibigsed similarity. However, the row-normalized version
does somewhat worse for tleeard dataset, especially for the cosine-based algorithm. Neskess, because of the
consistent improvements achieved in the majority of thaskts, in the rest of our experiments we will always use
row normalization.

4.5 Model Size Sensitivity

Recall from Section 3 the item-based recommendations armpuated using a model that utilizes thenost similar
items for each one of the different items. To evaluate theisieity of the different algorithms on the value &fwe
performed an experiment in which we letake the values of 10, 20, 30, 40, and 50. The recommendataracies
for these experiments are shown in Figure 3 for the cosind-camditional probability-based algorithms. For the
conditional probability-based algorithms, the experitsemere performed using a value@f= 0.5.

As we can see from these experiments, the overall recomntien@&curacy of the item-based algorithms does tend
to improve as we increase the valuekofThe only exception is theovielenglataset for which the recommendation
accuracies decrease slightly as we incrdasdf we ignore this dataset, the average recommendationracies
for the cosine-based algorithm incrementally improve 824, 0.9%, 0.8%, and 0.4% as we vanfrom 10 to 50
items; whereas in the case of the conditional probabilagda algorithm the average incremental improvements are
1.5%, 0.5%, 0.4%, and 0.3%. These results indicate that€n &or small values df the item-based recommendation
algorithms provide reasonably accurate recommendaton(ii) increasing the value &fdoes not lead to significant
improvements. This is particularly important since smallues ofk lead to fast recommendation ratés.( low
computational requirements) without materially affegtthe overall quality of the recommendations. Note that the
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ecommerce catalog ccard skills  movielens ecommerce catalog ccard skills  movielens
(a) Cosine-Based Similarity (b) Conditional Probability-Based Similarity

Figure 3: The recall as a function of the number of most similar items (k) used in computing the top-N recommendations for the
cosine- and conditional-probability-based recommendation algorithms.

diminishing incremental improvements achieved by indreathe value ok is a direct consequence of the fact that
we are only looking for 10 recommended iteme.( N = 10). As a result, onck is sufficiently large, to ensure that

the various item-to-item lists have sufficient common itearsy further increases kwill not change the order of the
top-Nitems.

4.6 Item Frequency Scaling Sensitivity

One of the parameters of the conditional probability-basedN recommendation algorithm is the valuecofised to
control the extend to which the similarity to frequently poased/occurring items will be de-emphasized. To study
the sensitivity of the recommendation algorithm on thisapaeter we performed a sequence of experiments in which
we variede from 0.0 to 1.0 in increments of 0.1. Figure 4 shows the reaeliieved on the different datasets for the
different values ofy, relative to the recall achieved by the cosine-based dtyari A value greater than one indicates
that the conditional probability-based scheme outperfotime cosine-based scheme, whereas a value less than one,
indicates that the latter performs better. Note that theselts were obtained usihkg= 10.

‘Decommerce mcatalog gccard gskills .movielens‘

Relative Recall

0.0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 09 1.0

Various values of a

Figure 4: The recommendation quality as a function of the item-frequency-based scaling achieved by the o parameter for
conditional-probability-based recommendation algorithms relative to that achieve by the cosine-based algorithm.
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A number of interesting observations can be made by lookitigearesults shown in Figure 4. First, for all datasets,
the value ofx has a significant impact on the recommendation quality, fherdnt values ofx lead to substantially
different recalls. Second, as we increase the valug tfie changes in the recall are fairly smooth. Third, the alfi
« that leads to the highest recall depends on the dataset.ighesh performance for thecommercecatalog ccard,
skills, andmovielensvas obtained using values of 0.1, 0.2, 0.2, 0.4, and 0.5, respectively. Foddheach one
of the datasets there exist a set of valuesofdhat lead to higher quality recommendations than those cioaaby
the cosine-based algorithm. Fifth, for all datasets,. ¥ 8 « < 0.6, then the conditional probability-based scheme
achieved consistently good performance. These resulgestighat the optimal value of needs to be estimated for
each particular dataset. This can be done by hiding a poofitine training set and using it to estimate the value of
that leads to the highest recommendation accuracy.

The results in Figure 4 also show how the cosine- and comditiprobability-based schemes compare with each
other. From these results we can see that for most datastts witle range ofr values the conditional probability-
based algorithm leads to somewhat higher recalls than thieedased scheme. One the average, the conditional
probability-based scheme does 2.9%, 4.8%, 5.0%, 4.7%, a8 Better fore equal to 0.1, 0.2, 0.3, 0.4, and 0.5,
respectively. Furthermore, if we compare the results oletifor the optimal values ef, we can see that the con-
ditional probability-based algorithm does 9.1% bettenttize cosine-based scheme. We believe these improvements
are a direct results of the higher degree of tunability thagarovided by the: parameter.

4.7 Comparison with the User-based Recommendation Algorithm

Finally, to compare the performance of our item-based renendation algorithms with that achieved by user-based
algorithms we performed an experiment in which we compuietip-N recommendations using both the item-based
and the user-based recommendation algorithms. Thesdsesalshown in Figure 5. The user-based recommenda-
tions were obtained using the algorithm described in SeQiavith user-neighborhoods of size 50, and unit length
normalized rows. Furthermore, we used a similarity-wedghdpproach to determine the frequency of each item, and
we did not include neighbors that had an identical set of stasithe active item (as these neighbors do not contribute
at all in the recommendation).

Figure 5 includes three different sets of item-based reglitained wittk = 20. The results labeled “Cosine” cor-
respond to the cosine-based results. The results labelbtEa=0.5" correspond to the conditional probabilitysée
algorithm in whicha was set to 0.5. The results labeled “CProb-a=Opt” corredporihe conditional probability-
based algorithm that uses for each dataset the valaetbét achieved the highest performance in the experiments
discussed in Section 4.6. Finally, Figure 5 also includesdh-N recommendation quality achieve by the naive algo-
rithm, labeled “Frequent”, that recommends fianost frequent items not already present in the active uset’sf
items.

From the results in Figure 5 we can see that both the “Cosind'the “CProb-a=0.5" algorithms outperform the
user-based algorithm in three out of the five datasets, valse€i€Prob-a=Opt” outperforms the user-based scheme
in all five datasets. It is interesting to note that the firsh ftem-based algorithms perform substantially better for
the first three datasets and only marginally worse for theaiemg two. In fact, the average improvement achieved
over all five datasets is a significant 15.7% and 18.8% for i@sand “CProb-a=0.5", respectively. The item-based
algorithm that uses the optimal valuescoperforms even better, achieving an average improvement @f. 2Also
note that both the user- and item-based algorithms prodiomenrmendations whose quality is substantially better than
the recommendations produced by the naive “Frequent” algor

One of the advantages of the item-based algorithm is thatsinmuch smaller computational requirements than the
user-basedop-N recommendation algorithm. Table 2 shows the amount of tieggired by the two algorithms to
compute théop-N recommendations for each one of the five datasets. The cdhimeted “ModelTime” shows the
amount of time required to build the item-based recommeodatodel {.e., compute thé& most similar items), the
columns labeled “RecmdTime” shows the amount of time reqlicecompute all the recommendations for each one
of the dataset, and the columns labeled “RcmdRate” showsathat which theop-N recommendations were com-
puted in terms ofecommendations/seconbote that our implementation of the user-bassg N recommendation
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Figure 5: The quality of the recommendations obtained by the naive, the item-based and the user-based recommendation algo-
rithms.

algorithm takes advantage of the sparse user-item matoxdar to identify the nearest users as quickly as possible.
All the times in Table 2 are in seconds.

User-based Iltem-based
Name RcmdTime| RcmdRate| ModelTime | RemdTime | RcmdRate
ecommerce 4.05 1646 0.92 0.33 20203
catalog 27.20 1848 414 2.20 22817
ccard 50.04 851 7.85 2.43 17542
skills 6.50 672 1.30 0.23 19017
movielens 3.38 278 1.54 0.20 4715

Table 2: The computational requirements for computing the top-N recommendations for both the user- and item-based algorithms.

A number of interesting observations can be made by lookifiglale 2. First, the recommendation rates achieved
by the item-based algorithm are 12 to 28 times higher thasetazhieved by the user-based algorithm. If we add
the various “RcmdTime” for all five data sets we can see thataverall recommendation rate for the item-based
algorithm is 19579 recommendations/second compared 1di7 recommendations/second achieved by the user-
based algorithm. This translates to one recommendatioty &@s for the item-based algorithm, versus 864us for
the user-based algorithm. Second, as discussed in SecBipin& amount of time required to build the models for the
item-based algorithm is quite small. Third, even accounfor the model building time, the item-based algorithm is
still two to seven times faster than the user-based alguarith

In summary, the item-basedp-N recommendation algorithms improve the recommendatioadywred by the
user-based algorithms by up to 27% in terms of recommenaatiouracy, and it is up to 28 times faster.

5 Conclusions and Directions for Future Research

In this paper we presented and experimentally evaluatedss df model-baseip-N recommendation algorithm
that uses item-to-item similarities to compute the recomdations. Our results showed that both the cosine- and
conditional probability-based item similarity schemesd¢o recommenders that on the average provide more accurate
recommendations than those provided by traditional uaset CF techniques. Furthermore, the proposed algorithms
are substantially faster; allowing real-time recommeiwhatindependent of the size of the user-item matrix.

We believe that theop-N recommender algorithms presented in this paper can be iragtay combining elements

11

www.manaraa.com



from both the user- and item-based approaches. User-bppeaahes by dynamically computing a neighborhood of
similar users are better suited to provide truly persoralimformation. On the other hand, item-based approaches by
directly computing the similarity between items appeardmpute more accurate recommendations. However, one
potential limitation of item-based approaches on verydarger collections, is that the globally computed itemtéoni
similarities may not be able to provide sufficiently degré@ersonalization (even when combined in the context of
basket-to-item similarity). In this case, an approach fhiat identifies a reasonably large neighborhood of similar
users and then using this subset to derive the item-basethreendation model may be able to combine the best of
both worlds and perform even better recommendations.
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